Login / Signup

Human PBMC scRNA-seq-based aging clocks reveal ribosome to inflammation balance as a single-cell aging hallmark and super longevity.

Hongming ZhuJiawei ChenKangping LiuLei GaoHaiyan WuLiangliang MaJieru ZhouZhongmin LiuJingdong Jackie Han
Published in: Science advances (2023)
Quantifying aging rate is important for evaluating age-associated decline and mortality. A blood single-cell RNA sequencing dataset for seven supercentenarians (SCs) was recently generated. Here, we generate a reference 28-sample aging cohort to compute a single-cell level aging clock and to determine the biological age of SCs. Our clock model placed the SCs at a blood biological age to between 80.43 and 102.67 years. Compared to the model-expected aging trajectory, SCs display increased naive CD8 + T cells, decreased cytotoxic CD8 + T cells, memory CD4 + T cells, and megakaryocytes. As the most prominent molecular hallmarks at the single-cell level, SCs contain more cells and cell types with high ribosome level, which is associated with and, according to Bayesian network inference, contributes to a low inflammation state and slow aging of SCs. Inhibiting ribosomal activity or translation in monocytes validates such translation against inflammation balance revealed by our single-cell aging clock.
Keyphrases
  • single cell
  • rna seq
  • high throughput
  • oxidative stress
  • gene expression
  • cardiovascular disease
  • signaling pathway
  • cell death
  • bone marrow
  • risk factors
  • pluripotent stem cells
  • pi k akt