Treatment of Water Contaminated with Non-Steroidal Anti-Inflammatory Drugs Using Peroxymonosulfate Activated by Calcined Melamine@magnetite Nanoparticles Encapsulated into a Polymeric Matrix.
Reza Darvishi Cheshmeh SoltaniFatemeh AsgariNegin HassaniYeojoon YoonAlireza KhataeePublished in: Molecules (Basel, Switzerland) (2022)
In the present study, calcined melamine (CM) and magnetite nanoparticles (MNPs) were encapsulated in a calcium alginate (CA) matrix to effectively activate peroxymonosulfate (PMS) and generate free radical species for the degradation of ibuprofen (IBP) drug. According to the Langmuir isotherm model, the adsorption capacities of the as-prepared microcapsules and their components were insignificant. The CM/MNPs/CA/PMS process caused the maximum degradation of IBP (62.4%) in 30 min, with a synergy factor of 5.24. Increasing the PMS concentration from 1 to 2 mM improved the degradation efficiency from 62.4 to 68.0%, respectively, while an increase to 3 mM caused a negligible effect on the reactor effectiveness. The process performance was enhanced by ultrasound (77.6% in 30 min), UV irradiation (91.6% in 30 min), and electrochemical process (100% in 20 min). The roles of O•H and SO4•- in the decomposition of IBP by the CM/MNPs/CA/PMS process were 28.0 and 25.4%, respectively. No more than 8% reduction in the degradation efficiency of IBP was observed after four experimental runs, accompanied by negligible leachate of microcapsule components. The bio-assessment results showed a notable reduction in the bio-toxicity during the treatment process based on the specific oxygen uptake rate (SOUR).
Keyphrases
- anti inflammatory drugs
- systematic review
- randomized controlled trial
- molecularly imprinted
- magnetic resonance imaging
- gold nanoparticles
- drug delivery
- emergency department
- heavy metals
- radiation therapy
- drinking water
- computed tomography
- high resolution
- mass spectrometry
- adverse drug
- drug induced
- liquid chromatography
- solid phase extraction
- contrast enhanced ultrasound