SARS-CoV-2 Causes Brain Damage: Therapeutic Intervention with AZD8797.
Seyhun SolakogluEngin Alp OnenErva Sevic YilmazAyca Karagoz KorogluDilek AkakinPublished in: Microscopy and microanalysis : the official journal of Microscopy Society of America, Microbeam Analysis Society, Microscopical Society of Canada (2023)
Elevated CX3CL1 is associated with severe COVID-19 and neurologic symptoms. We aimed to investigate the potential protective effects of selective CX3CR1 antagonist AZD8797 on SARS-CoV-2-induced neuronal damage, and to identify the underlying mechanisms. K18-hACE2 transgenic mice (n = 37) were randomly divided into control groups and SARS-CoV-2 groups, with and without intraperitoneal administration of vehicle or AZD8797 (2.5 mg/mL/day), following exposure to either a single dose of SARS-CoV-2 inhalation or no exposure. Object recognition and hole board tests were performed to assess memory function. Postinfection 8 days, brain tissues were analyzed for histopathological changes, viral, glial, apoptotic, and other immunohistochemical markers, along with measuring malondialdehyde, glutathione, and myeloperoxidase activities. Serum samples were analyzed for proinflammatory cytokines. The SARS-CoV-2 group showed significant weight loss, neuronal damage, oxidative stress, and impaired object recognition memory, while AZD8797 treatment mitigated some of these effects, especially in weight, apoptosis, glutathione, and MCP-1. Histopathological analyses supported the protective effects of AZD8797 against SARS-CoV-2-induced damage. The CX3CL1-CX3CR1 signaling pathway could offer a promising target for reducing SARS-CoV-2's neurological impact, but additional research is needed to confirm these findings in combination with other therapies and assess the clinical significance.
Keyphrases
- sars cov
- oxidative stress
- respiratory syndrome coronavirus
- diabetic rats
- weight loss
- signaling pathway
- working memory
- randomized controlled trial
- cerebral ischemia
- physical activity
- type diabetes
- gene expression
- dna damage
- ischemia reperfusion injury
- risk assessment
- induced apoptosis
- white matter
- climate change
- cell proliferation
- resting state
- weight gain
- multiple sclerosis
- brain injury
- blood brain barrier
- spinal cord
- human health
- anti inflammatory
- obese patients
- gastric bypass
- functional connectivity
- heat shock