Login / Signup

Tilapia can be a Beneficial n-3 LC-PUFA Source due to Its High Biosynthetic Capacity in the Liver and Intestine.

Dizhi XieJunfeng GuanXiaoping HuangChao XuQing PanYuanyou Li
Published in: Journal of agricultural and food chemistry (2022)
To assess whether farmed tilapia can be a beneficial n-3 long-chain polyunsaturated fatty acid (LC-PUFA) source for human health, four diets with linoleic acid (LA) to α-linolenic acid (ALA) ratios at 9, 6, 3, and 1 were prepared to feed juveniles for 10 weeks, and the LC-PUFA biosynthetic characteristics in the liver, intestine, and brain and the muscular quality were analyzed. It was shown that the n-3 LC-PUFA levels of the intestine and liver increased in a parallel pattern with the dietary ALA levels. Correspondingly, in the fish fed diet with high ALA levels, the mRNA levels of genes related to LC-PUFA biosynthesis including fads2 , elovl5 , and ppar α in the intestine and elovl5 in the liver were increased, and the muscular n-3 LC-PUFA levels and textures were improved. The results demonstrated that tilapia intestine and liver possess high n-3 LC-PUFA biosynthetic capacity, which suggests that farmed tilapia can be a beneficial n-3 LC-PUFA source.
Keyphrases