Capillarity-Enhanced Organ-Attachable Adhesive with Highly Drainable Wrinkled Octopus-Inspired Architectures.
Sangyul BaikHeon Joon LeeDa Wan KimHyeongho MinChanghyun PangPublished in: ACS applied materials & interfaces (2019)
Mimicking the attachment of octopus suction cups has become appealing for the development of skin/organ adhesive patches capable of strong, reversible adhesion in dry and wet conditions. However, achieving high conformity against the three-dimensionally (3D) rough and curved surfaces of the human body remains an enduring challenge for further medical applications of wound protection, diagnosis, or therapeutics. Here, an adhesive patch inspired by the soft wrinkles of miniaturized 3D octopus suction cups is presented for high drainability and robust attachment against dry and wet human organs. Investigating the structural aspects of the wrinkles, a simple model is developed to maximize capillary interactions of the wrinkles against wet substrates. A layer of soft siloxane derivative is then transferred onto the wrinkles to enhance fixation against dry and sweaty skin as well as various wet organ surfaces. Our bioinspired patch offers opportunities for enhancing the versatility of adhesives for developing skin- and/or organ-attachable devices.