Login / Signup

Effect of dexamethasone on the expression of MMPs, adenosine A1 receptors and NFKB by human trabecular meshwork cells.

Normie Aida Mohd NasirRenu AgarwalAnna KrasilnikovaSiti Hamimah Sheikh Abdul KadirIgor Iezhitsa
Published in: Journal of basic and clinical physiology and pharmacology (2020)
Objectives Steroid-induced ocular hypertension and glaucoma are associated with extracellular matrix remodeling at the trabecular meshwork (TM) of the eye due to reduced secretion of matrix metalloproteinases (MMPs), a family of enzymes regulating extracellular matrix proteolysis. Several biological functions of steroids are known to involve regulation of adenosine A1 receptors (A1AR) and nuclear factor kappa B (NFKB). Since MMPs expression in TM has been shown to be regulated by A1AR as well as transcription factors, it is likely that dexamethasone-induced changes in aqueous humor dynamics involve reduced MMP and A1AR expression and reduced NFKB activation. Hence, the current study investigated the association of dexamethasone-induced reduction in MMP secretion with reduced NFKB activation and A1AR expression. Methods Human trabecular meshwork cells (HTMCs) were characterized by estimating myocilin and alpha smooth muscle actin expression and then were treated with dexamethasone 100 nM for 2, 5 and 7 days. The MMP secretion was estimated in culture media using Western blot. Immunocytochemistry (ICC) and ELISA were done to investigate the effect of dexamethasone on NFKB phosphorylation. A1AR expression in HTMCs was determined using Western blot and ELISA. Results Dexamethasone caused a significant reduction in both MMP-2 and -9 expression compared to untreated group after five and seven days but not after two days of culture. Significantly reduced phosphorylated NFKB and A1AR protein levels were detected in dexamethasone treated compared to vehicle treated HTMCs after five days of culture. Conclusions Dexamethasone reduces MMP-2 and -9 secretion by HTMCs and this effect of dexamethasone is associated with reduced NFKB phosphorylation and A1AR expression.
Keyphrases