Diagnostic Performance of Antigen Rapid Diagnostic Tests, Chest Computed Tomography, and Lung Point-of-Care-Ultrasonography for SARS-CoV-2 Compared with RT-PCR Testing: A Systematic Review and Network Meta-Analysis.
Sung-Ryul ShimSeong-Jang KimMyunghee HongJonghoo LeeMin Gyu KangHyun Wook HanPublished in: Diagnostics (Basel, Switzerland) (2022)
(1) Background: The comparative performance of various diagnostic methods for severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection remains unclear. This study aimed to investigate the comparison of the 3 index test performances of rapid antigen diagnostic tests (RDTs), chest computed tomography (CT), and lung point-of-care-ultrasonography (US) with reverse transcription-polymerase chain reaction (RT-PCR), the reference standard, to provide more evidence-based data on the appropriate use of these index tests. (2) Methods: We retrieved data from electronic literature searches of PubMed, Cochrane Library, and EMBASE from 1 January 2020, to 1 April 2021. Diagnostic performance was examined using bivariate random-effects diagnostic test accuracy (DTA) and Bayesian network meta-analysis (NMA) models. (3) Results: Of the 3992 studies identified in our search, 118 including 69,445 participants met our selection criteria. Among these, 69 RDT, 38 CT, and 15 US studies in the pairwise meta-analysis were included for DTA with NMA. CT and US had high sensitivity of 0.852 (95% credible interval (CrI), 0.791-0.914) and 0.879 (95% CrI, 0.784-0.973), respectively. RDT had high specificity, 0.978 (95% CrI, 0.960-0.996). In accuracy assessment, RDT and CT had a relatively higher than US. However, there was no significant difference in accuracy between the 3 index tests. (4) Conclusions: This meta-analysis suggests that, compared with the reference standard RT-PCR, the 3 index tests (RDTs, chest CT, and lung US) had similar and complementary performances for diagnosis of SARS-CoV-2 infection. To manage and control COVID-19 effectively, future large-scale prospective studies could be used to obtain an optimal timely diagnostic process that identifies the condition of the patient accurately.
Keyphrases
- computed tomography
- contrast enhanced
- respiratory syndrome coronavirus
- dual energy
- sars cov
- systematic review
- image quality
- case control
- positron emission tomography
- magnetic resonance imaging
- coronavirus disease
- magnetic resonance
- meta analyses
- big data
- electronic health record
- randomized controlled trial
- genome wide
- deep learning
- gene expression
- current status
- machine learning
- loop mediated isothermal amplification
- data analysis
- sensitive detection