Login / Signup

Dipeptidyl peptidase-4 disturbs adipocyte differentiation via the negative regulation of the glucagon-like peptide-1/adiponectin-cathepsin K axis in mice under chronic stress conditions.

Meiping ZhangXueling YueShengnan XuJinshun PiaoLongguo ZhaoShangzhi ShuMasafumi KuzuyaPing LiLan HongWeon KimBin LiuXian Wu Cheng
Published in: FASEB journal : official publication of the Federation of American Societies for Experimental Biology (2024)
Exposure to chronic psychosocial stress is a risk factor for metabolic disorders. Because dipeptidyl peptidase-4 (DPP4) and cysteinyl cathepsin K (CTSK) play important roles in human pathobiology, we investigated the role(s) of DPP4 in stress-related adipocyte differentiation, with a focus on the glucagon-like peptide-1 (GLP-1)/adiponectin-CTSK axis in vivo and in vitro. Plasma and inguinal adipose tissue from non-stress wild-type (DPP4 +/+ ), DPP4-knockout (DPP4 -/- ) and CTSK-knockout (CTSK -/- ) mice, and stressed DPP4 +/+ , DPP4 -/- , CTSK -/- , and DPP4 +/+ mice underwent stress exposure plus GLP-1 receptor agonist exenatide loading for 2 weeks and then were analyzed for stress-related biological and/or morphological alterations. On day 14 under chronic stress, stress decreased the weights of adipose tissue and resulted in harmful changes in the plasma levels of DPP4, GLP-1, CTSK, adiponectin, and tumor necrosis factor-α proteins and the adipose tissue levels of CTSK, preadipocyte factor-1, fatty acid binding protein-4, CCAAT/enhancer binding protein-α, GLP-1 receptor, peroxisome proliferator-activated receptor-γ, perilipin2, secreted frizzled-related protein-4, Wnt5α, Wnt11 and β-catenin proteins and/or mRNAs as well as macrophage infiltration in adipose tissue; these changes were rectified by DPP4 deletion. GLP-1 receptor activation and CTSK deletion mimic the adipose benefits of DPP4 deficiency. In vitro, CTSK silencing and overexpression respectively prevented and facilitated stress serum and oxidative stress-induced adipocyte differentiation accompanied with changes in the levels of pref-1, C/EBP-α, and PPAR-γ in 3T3-L1 cells. Thus, these findings indicated that increased DPP4 plays an essential role in stress-related adipocyte differentiation, possibly through a negative regulation of GLP-1/adiponectin-CTSK axis activation in mice under chronic stress conditions.
Keyphrases