Mitochondrial pyruvate carrier abundance mediates pathological cardiac hypertrophy.
Mariana Fernandez-CaggianoAlisa KamyninaAsvi A FrancoisOleksandra PrysyazhnaThomas R EykynSusanne KrasemannMaria G Crespo-LeiroMaria Garcia VieitesKatiuscia BianchiValle MoralesNieves DomenechPhilip EatonPublished in: Nature metabolism (2020)
Cardiomyocytes rely on metabolic substrates, not only to fuel cardiac output, but also for growth and remodelling during stress. Here we show that mitochondrial pyruvate carrier (MPC) abundance mediates pathological cardiac hypertrophy. MPC abundance was reduced in failing hypertrophic human hearts, as well as in the myocardium of mice induced to fail by angiotensin II or through transverse aortic constriction. Constitutive knockout of cardiomyocyte MPC1/2 in mice resulted in cardiac hypertrophy and reduced survival, while tamoxifen-induced cardiomyocyte-specific reduction of MPC1/2 to the attenuated levels observed during pressure overload was sufficient to induce hypertrophy with impaired cardiac function. Failing hearts from cardiomyocyte-restricted knockout mice displayed increased abundance of anabolic metabolites, including amino acids and pentose phosphate pathway intermediates and reducing cofactors. These hearts showed a concomitant decrease in carbon flux into mitochondrial tricarboxylic acid cycle intermediates, as corroborated by complementary 1,2-[13C2]glucose tracer studies. In contrast, inducible cardiomyocyte overexpression of MPC1/2 resulted in increased tricarboxylic acid cycle intermediates, and sustained carrier expression during transverse aortic constriction protected against cardiac hypertrophy and failure. Collectively, our findings demonstrate that loss of the MPC1/2 causally mediates adverse cardiac remodelling.
Keyphrases
- angiotensin ii
- high glucose
- endothelial cells
- antibiotic resistance genes
- oxidative stress
- left ventricular
- angiotensin converting enzyme
- vascular smooth muscle cells
- diabetic rats
- aortic valve
- poor prognosis
- pulmonary artery
- high fat diet induced
- amino acid
- magnetic resonance
- ms ms
- cell proliferation
- emergency department
- computed tomography
- wastewater treatment
- microbial community
- heart failure
- metabolic syndrome
- spinal cord
- coronary artery
- type diabetes
- breast cancer cells
- insulin resistance
- adipose tissue
- electronic health record
- wild type
- pet imaging
- atrial fibrillation
- positive breast cancer