Bacteriocins attenuate Listeria monocytogenes-induced intestinal barrier dysfunction and inflammatory response.
Zhao WangJing DuWenyu MaXinjie DiaoQi LiuGuorong LiuPublished in: Applied microbiology and biotechnology (2024)
Bacteriocins have the potential to effectively improve food-borne infections or gastrointestinal diseases and hold promise as viable alternatives to antibiotics. This study aimed to explore the antibacterial activity of three bacteriocins (nisin, enterocin Gr17, and plantaricin RX-8) and their ability to attenuate intestinal barrier dysfunction and inflammatory responses induced by Listeria monocytogenes, respectively. Bacteriocins have shown excellent antibacterial activity against L. monocytogenes without causing any cytotoxicity. Bacteriocins inhibited the adhesion and invasion of L. monocytogenes on Caco-2 cells, lactate dehydrogenase (LDH), trans-epithelial electrical resistance (TEER), and cell migration showed that bacteriocin improved the permeability of Caco-2 cells. These results were attributed to the promotion of tight junction proteins (TJP) assembly, specifically zonula occludens-1 (ZO-1), occludin, and claudin-1. Furthermore, bacteriocins could alleviate inflammation by inhibiting the mitogen-activated protein kinase (MAPK) and nuclear factor kappa B (NF-κB) pathways and reducing the secretion of interleukin-6 (IL-6), interleukin-1 β (IL-1β) and tumor necrosis factor α (TNF-α). Among three bacteriocins, plantaricin RX-8 showed the best antibacterial activity against L. monocytogenes and the most pronounced protective effect on the intestinal barrier due to its unique structure. Based on our findings, we hypothesized that bacteriocins may inhibit the adhesion and invasion of L. monocytogenes by competing adhesion sites. Moreover, they may further enhance intestinal barrier function by inhibiting the expression of L. monocytogenes virulence factors, increasing the expression of TJP and decreasing the secretion of inflammatory factors. Therefore, bacteriocins will hopefully be an effective alternative to antibiotics, and this study provides valuable insights into food safety concerns. KEY POINTS: • Bacteriocins show excellent antibacterial activity against L. monocytogenes • Bacteriocins improve intestinal barrier damage and inflammatory response • Plantaricin RX-8 has the best protective effect on Caco-2 cells damage.
Keyphrases
- cell migration
- oxidative stress
- nuclear factor
- induced apoptosis
- inflammatory response
- signaling pathway
- listeria monocytogenes
- cell cycle arrest
- toll like receptor
- rheumatoid arthritis
- poor prognosis
- biofilm formation
- escherichia coli
- pi k akt
- cell death
- diabetic rats
- lps induced
- human health
- immune response
- tyrosine kinase
- big data
- artificial intelligence
- antimicrobial resistance
- drug induced
- cell adhesion
- protein kinase