Login / Signup

Thermosusceptible Nitric-Oxide-Releasing Nitrogel for Strengthening Antitumor Immune Responses with Tumor Collagen Diminution and Deep Tissue Delivery during NIR Laser-Assisted Photoimmunotherapy.

Adityanarayan MohapatraJagannath MondalPadmanaban SathiyamoorthyAyeskanta MohantyVishnu RevuriSanthosh Kalash RajendrakumarYong-Kyu LeeIn-Kyu Park
Published in: ACS applied materials & interfaces (2023)
Combined cancer immunotherapy has demonstrated promising potential with an amplified antitumor response and immunosuppressive tumor microenvironment (TME) modulation. However, one of the main issues that cause treatment failure is the poor diffusion and insufficient penetration of therapeutic and immunomodulatory agents in solid tumors. Herein, a cancer treatment approach that combines photothermal therapy (PTT) and nitric oxide (NO) gas therapy for tumor extracellular matrix (ECM) degradation, along with NLG919, an indoleamine 2,3-dioxygenase (IDO) inhibitor that reduces tryptophan catabolism to kynurenine, and DMXAA, a stimulator of interferon gene (STING) agonist that stimulates antigen cross-presentation, is proposed to overcome this issue. Upon NIR (808 nm) laser irradiation, NO-GEL achieved the desired thermal ablation by releasing sufficient tumor antigens through immunogenic cell death (ICD). NO delivery triggered local diffusion of excess NO gas for effectively degrading tumor collagen in the ECM, homogeneously delivered NLG919 throughout the tumor tissue, inhibited IDO expression that was upregulated by PTT, and reduced the immune suppressive activities. The sustained release of DMXAA prolonged dendritic cell maturation and CD8 + T cell activation against the tumor. In summary, NO-GEL therapeutics offer a significant tumor regression with PTT and STING agonist combination that stimulates a durable antitumor immune response. Additional unification of IDO inhibition during PTT supplements the immunotherapy by reducing the T cell apoptosis and immune suppressive cell infiltration to TME. NO-GEL with the STING agonist and IDO inhibitor is an effective therapeutic combination to counter possible limitations during solid tumor immunotherapy.
Keyphrases