Login / Signup

Instrumented Balance Error Scoring System in Children and Adolescents-A Cross Sectional Study.

Nils K T SchönbergJulius PoppelDavid R HowellJohanna WagnerMichael HöfingerNicole FabriElena M BonkePhiline RojczykMatthias HöslLorenz KiwullSebastian A SchröderAstrid BlaschekKatharina VillInga K KoerteDoreen HuppertFlorian HeinenMichaela Veronika Bonfert
Published in: Diagnostics (Basel, Switzerland) (2024)
Background: The Balance Error Scoring System (BESS) is a commonly used method for clinically evaluating balance after traumatic brain injury. The utilization of force plates, characterized by their cost-effectiveness and portability, facilitates the integration of instrumentation into the BESS protocol. Despite the enhanced precision associated with instrumented measures, there remains a need to determine the clinical significance and feasibility of such measures within pediatric cohorts. Objective: To report a comprehensive set of posturographic measures obtained during instrumented BESS and to examine the concurrent validity, reliability, and feasibility of instrumented BESS in the pediatric point of care setting. Methods: Thirty-seven participants (18 female; aged 13.32 ± 3.31 years) performed BESS while standing on a force plate to simultaneously compute stabilometric measures (instrumented BESS). Ellipse area (EA), path length (PL), and sway velocity (VM) were obtained for each of the six BESS positions and compared with the respective BESS scores. Additionally, the effects of sex and age were explored. A second BESS repetition was performed to evaluate the test-retest reliability. Feedback questionnaires were handed out after testing to evaluate the feasibility of the proposed protocol. Results: The BESS total score was 20.81 ± 6.28. While there was no statistically significant age or sex dependency in the BESS results, instrumented posturography demonstrated an age dependency in EA, VM, and PL. The one-leg stance on a soft surface resulted in the highest BESS score (8.38 ± 1.76), EA (218.78 cm 2 ± 168.65), PL (4386.91 mm ± 1859.00), and VM (21.93 mm/s ± 9.29). The Spearman's coefficient displayed moderate to high correlations between the EA (rs = 0.429-0.770, p = 0.001-0.009), PL (rs = 0.451-0.809, p = 0.001-0.006), and VM (rs = 0.451-0.809, p = 0.001-0.006) when compared with the BESS scores for all testing positions, except for the one-leg stance on a soft surface. The BESS total score significantly correlated during the first and second repetition (rs = 0.734, p ≤ 0.001), as did errors during the different testing positions (rs = 0.489-0.799, p ≤ 0.001-0.002), except during the two-legged stance on a soft surface. VM and PL correlated significantly in all testing positions (rs = 0.465-0.675, p ≤ 0.001-0.004; (rs = 0.465-0.675, p ≤ 0.001-0.004), as did EA for all positions except for the two-legged stance on a soft surface (rs = 0.392-0.581, p ≤ 0.001-0.016). A total of 92% of participants stated that the instructions for the testing procedure were very well-explained, while 78% of participants enjoyed the balance testing, and 61% of participants could not decide whether the testing was easy or hard to perform. Conclusions: Instrumented posturography may complement clinical assessment in investigating postural control in children and adolescents. While the BESS score only allows for the consideration of a total score approximating postural control, instrumented posturography offers several parameters representing the responsiveness and magnitude of body sway as well as a more differentiated analysis of movement trajectory. Concise instrumented posturography protocols should be developed to augment neuropediatric assessments in cases where a deficiency in postural control is suspected, potentially stemming from disruptions in the processing of visual, proprioceptive, and/or vestibular information.
Keyphrases