Login / Signup

Two-dimensional Dirac half-metal in porous carbon nitride C6N7monolayer via atomic doping.

Asadollah BafekryM FarajiNguyen N HieuYee Sin AngS KarbasizadehI Abdolhosseini SarsariMitra Ghergherehchi
Published in: Nanotechnology (2021)
Motivated by the recent experimental discovery of C6N7monolayer (Zhaoet al2021Science Bulletin66, 1764), we show that C6N7monolayer co-doped with C atom is a Dirac half-metal by employing first-principle density functional theory calculations. The structural, mechanical, electronic and magnetic properties of the co-doped C6N7are investigated by both the PBE and HSE06 functionals. Pristine C6N7monolayer is a semiconductor with almost isotropic electronic dispersion around the Γ point. As the doping of the C6N7takes place, the substitution of an N atom with a C atom transforms the monolayer into a dilute magnetic semiconductor, with the spin-up channel showing a band gap of 2.3 eV, while the spin-down channel exhibits a semimetallic phase with multiple Dirac points. The thermodynamic stability of the system is also checked out via AIMD simulations, showing the monolayer to be free of distortion at 500 K. The emergence of Dirac half-metal in carbon nitride monolayer via atomic doping reveals an exciting material platform for designing novel nanoelectronics and spintronics devices.
Keyphrases