Login / Signup

Solvent-Free Fabrication of Flexible and Robust Superhydrophobic Composite Films with Hierarchical Micro/Nanostructures and Durable Self-Cleaning Functionality.

Shanqiu LiuXiaotian ZhangStefan Seeger
Published in: ACS applied materials & interfaces (2019)
Superhydrophobic surfaces hold tremendous potential in a wide range of applications owing to their multifaced functionalities. However, the mechanochemical susceptibility of such materials hinders their widespread usage in practical applications. Here, we present a simple, solvent-free, and environmentally friendly approach to fabricate flexible and robust superhydrophobic composite films with durable self-cleaning functionality. The obtained composite film features unexpected but surprising hierarchical micro/nanoscopic structures as well as robust superhydrophobicity with a water contact angle of ∼170° and a sliding angle below 4°. Notably, the composite film exhibits mechanical robustness under cyclic abrasion, tape peeling, flexing, intensive finger wiping, and knife cutting; maintains excellent superhydrophobicity after long-time exposure to a high-humidity environment; and sustains exposure to highly corrosive species, such as strong acid/base solutions and organic solvents. The robust superhydrophobicity is ascribed to the induced micro/nanohierarchical surface structures, resulting in the trapped dual-scale air pockets, which could largely reduce the solid/liquid interface. In addition, even after oil contamination, the composite film maintains its water repellency and self-cleaning functionality. The robust superhydrophobic composite film developed here is expected to extend the application scope of superhydrophobic materials and should find potential usage in various industries and daily life.
Keyphrases