Login / Signup

Sequential Polyadenylation to Enable Alternative mRNA 3' End Formation.

Yajing HaoTing CaiChang LiuXuan ZhangXiang-Dong Fu
Published in: Molecules and cells (2023)
In eukaryotic cells, a key RNA processing step to generate mature mRNA is the coupled reaction for cleavage and polyadenylation (CPA) at the 3' end of individual transcripts. Many transcripts are alternatively polyadenylated (APA) to produce mRNAs with different 3' ends that may either alter protein coding sequence (CDS-APA) or create different lengths of 3'UTR (tandem-APA). As the CPA reaction is intimately associated with transcriptional termination, it has been widely assumed that APA is regulated cotranscriptionally. Isoforms terminated at different regions may have distinct RNA stability under different conditions, thus altering the ratio of APA isoforms. Such differential impacts on different isoforms have been considered as post-transcriptional APA, but strictly speaking, this can only be considered "apparent" APA, as the choice is not made during the CPA reaction. Interestingly, a recent study reveals sequential APA as a new mechanism for post-transcriptional APA. This minireview will focus on this new mechanism to provide insights into various documented regulatory paradigms.
Keyphrases
  • transcription factor
  • gene expression
  • induced apoptosis
  • binding protein
  • computed tomography
  • amino acid
  • heat shock
  • dna binding
  • heat stress
  • heat shock protein