Stable and efficient rare-earth free phosphors based on an Mg(II) metal-organic framework for hybrid light-emitting diodes.
Youssef AtoiniLuca M CavinatoJean-Louis SchmittDaniel Van OpdenboschRubén D CostaPublished in: Dalton transactions (Cambridge, England : 2003) (2024)
Stable and efficient green hybrid light-emitting diodes (HLEDs) were fabricated from a highly emissive Mg(II)-tetraphenyl ethylene derivative metal-organic framework embedded in a polystyrene matrix (Mg-TBC MOF@PS). The photoluminescence quantum yield (ϕ) of the material, >80%, remains constant upon polymer embedment. The resulting HLEDs featured high luminous efficiencies of >50 lm W -1 and long lifetimes of >380 h, making them among the most stable MOF-based HLEDs. The significance of this work relies on the combination of many features, such as the abundance of the metal ion, the straightforward scalability of the synthetic protocol, the great ϕ reached upon phosphor fabrication, and the state-of-the-art HLED performances.