CRISPR/Cas9 technology as a potent molecular tool for gene therapy.
Ansar KarimianKhalil AzizianHadi ParsianSona RafieianVahid Shafiei-IrannejadMaryam KheyrollahMehdi YousefiMaryam MajidiniaBahman YousefiPublished in: Journal of cellular physiology (2019)
Clustered regularly interspaced short palindromic repeats/CRISPR-associated nuclease 9 (CRISPR-Cas9) is an RNA-guided gene editing tool which offers several advantageous characteristics in comparison with the conventional methods (e.g., zinc finger nucleases and transcription activator-like effector nucleases) such as cost-effectiveness, flexibility, and being easy-to-use. Despite some limitations such as efficient delivery and safety, CRISPR-Cas9 is still the most convenient tool for gene editing purposes. Due to the potential capability of the CRISPR-Cas9 system in genome editing and correction of casual mutations, it can be considered as a possible therapeutic system in the treatment of disorders associated with the genome mutations and in particular cancer treatment. In this review, we will discuss CRISPR-Cas-based gene editing along with its classifications and mechanism of action. Furthermore, the therapeutic application of the CRISPR-Cas9 system in mutational disorders, delivery systems, as well as its advantages and limitations with a special emphasis on cancer treatment will be discussed.