Login / Signup

Stratification of amyotrophic lateral sclerosis patients: a crowdsourcing approach.

Robert KueffnerNeta ZachMaya BronfeldRaquel NorelNazem AtassiVenkat BalagurusamyBarbara Di CamilloAdriano ChioMerit CudkowiczDonna DillenbergerJavier Garcia-GarciaOrla HardimanBruce HoffJoshua KnightMelanie L LeitnerGuang LiLara M MangraviteThea NormanLiuxia Wangnull nullJinfeng XiaoWen-Chieh FangJian PengChen YangHuan-Jui ChangGustavo Stolovitzky
Published in: Scientific reports (2019)
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease where substantial heterogeneity in clinical presentation urgently requires a better stratification of patients for the development of drug trials and clinical care. In this study we explored stratification through a crowdsourcing approach, the DREAM Prize4Life ALS Stratification Challenge. Using data from >10,000 patients from ALS clinical trials and 1479 patients from community-based patient registers, more than 30 teams developed new approaches for machine learning and clustering, outperforming the best current predictions of disease outcome. We propose a new method to integrate and analyze patient clusters across methods, showing a clear pattern of consistent and clinically relevant sub-groups of patients that also enabled the reliable classification of new patients. Our analyses reveal novel insights in ALS and describe for the first time the potential of a crowdsourcing to uncover hidden patient sub-populations, and to accelerate disease understanding and therapeutic development.
Keyphrases