Beetle-robot hybrid interaction: sex, lateralization and mating experience modulate behavioural responses to robotic cues in the larger grain borer Prostephanus truncatus (Horn).
Donato RomanoGiovanni BenelliNickolas G KavallieratosChristos G AthanassiouAngelo CanaleCesare StefaniniPublished in: Biological cybernetics (2020)
Ethorobotics, a new fascinating field of biorobotics, proposes the use of robotic replicas as an advanced method for investigating animal behaviour. This novel research approach can also encourage the development of advanced bioinspired robots. In the present study, we investigated the pushing behaviour, a particular display occurring in several beetle species, such as the larger grain borer, Prostephanus truncatus, during both male-female and male-male contexts. We developed a robotic apparatus actuating female and male-mimicking dummies to study if sex, mating experience and asymmetries of robotic cues can modulate the escalation of pushing behaviour. Results showed that the time needed by P. truncatus to react to female-smelling biomimetic dummies was chiefly affected by their mating experience and the dummy odour. This was likely due to reduce waste of costly sperm in mated males during the subsequent sexual interactions. The pushing behaviour was performed longer and with a higher number of acts when virgin females were approached from their right side. More and longer pushing acts were noted when virgin males were approached from their left side. Dedicated neural circuits would likely act in opposite direction in females and males producing population-level lateralized sensory-motor displays, which may be evolved to promote male approaches from the left side of females, thus improving short-distance sex recognition. Overall, this study provides new insights on the behavioural ecology of stored-product beetles, as well as on self-organization and decentralized decision making that can be exploited to develop bioinspired algorithms for task optimization, involving real-world scenarios.