Arginine affects growth and integrity of grass carp enterocytes by regulating TOR signaling pathway and tight junction proteins.
Jiaojiao ChenDianfu ZhangQingsong TanMengmei LiuPengcheng HuPublished in: Fish physiology and biochemistry (2019)
Dietary arginine (Arg) could improve the intestinal structure and absorption of grass carp (Ctenopharyngodon idellus); however, the mechanism of Arg on intestinal morphology improvement was unclear. The present study aimed to explain the possible mechanism of the positive effect of Arg on intestinal epithelial cells of grass carp. An in vitro study was conducted through a primary culture model to assess the growth, cell viability, mRNA expressions of TOR signal pathway, and tight junction proteins of enterocytes after culture in the medium with 6 levels of Arg (0, 0.1, 0.2, 0.5, 1.0, and 2.0 mmol/L). The results showed that 0.5 mmol/L Arg improved the cell number and decreased the lactate dehydrogenase and creatine kinase activities in culture medium (P < 0.05). The alkaline phosphatase activity in cell lysis buffer was depressed by 1 and 2 mmol/L Arg (P < 0.05). The nitric oxide (NO) content showed an increasing trend with the Arg content (P < 0.05), whereas the NO synthase activity showed an opposite trend to NO. TOR expression was higher in 0.2 and 0.5 mmol/L groups, whereas S6K1 expression in 1.0 mmol/L and 2.0 mmol/L groups were lower (P < 0.05). The mRNA expressions of occludin, claudin 3, and claudin c in 0.5 mmol/L group were the highest, while ZO-1 and claudin b expressions were higher in 0.2 and 0.5 mmol/L groups (P < 0.05). This study indicated that Arg enhanced the growth and integrity of intestinal epithelial cells of grass carp through upregulation of mRNA expression of TOR signal pathway and tight junction proteins at an optimal Arg content of 0.2-0.5 mmol/L.