Combining muscle-computer interface guided training with bihemispheric tDCS improves upper limb function in patients with chronic stroke.
Xue ZhangRaf L J MeesenStephan P SwinnenHilde FeysDaniel G WoolleyHsiao-Ju ChengNicole WenderothPublished in: Journal of neurophysiology (2024)
Transcranial direct current stimulation (tDCS) may facilitate neuroplasticity but with a limited effect when administered while patients with stroke are at rest. Muscle-computer interface (MCI) training is a promising approach for training patients with stroke even if they cannot produce overt movements. However, using tDCS to enhance MCI training has not been investigated. We combined bihemispheric tDCS with MCI training of the paretic wrist and examined the effect of this intervention in patients with chronic stroke. A crossover, double-blind, randomized trial was conducted. Twenty-six patients with chronic stroke performed MCI wrist training for three consecutive days at home while receiving either real tDCS or sham tDCS in counterbalanced order and separated by at least 8 mo. The primary outcome measure was the Fugl-Meyer Assessment Upper Extremity Scale (FMA-UE) that was measured 1 wk before training, on the first training day, on the last training day, and 1 wk after training. There was neither a significant difference in the baseline FMA-UE score between groups nor between intervention periods. Patients improved 3.9 ± 0.6 points in FMA-UE score when receiving real tDCS, and 1.0 ± 0.7 points when receiving sham tDCS ( P = 0.003). In addition, patients also showed continuous improvement in their motor control of the MCI tasks over the training days. Our study showed that the training paradigm could lead to functional improvement in patients with chronic stroke. We argue that appropriate MCI training in combination with bihemispheric tDCS could be a useful adjuvant for neurorehabilitation in patients with stroke. NEW & NOTEWORTHY Bihemispheric tDCS combined with a novel MCI training for motor control of wrist extensor can improve upper limb function especially a training-specific effect on the wrist movement in patients with chronic stroke. The training regimen can be personalized with adjustments made daily to accommodate the functional change throughout the intervention. This demonstrates that bihemispheric tDCS with MCI training could complement conventional poststroke neurorehabilitation.
Keyphrases
- transcranial direct current stimulation
- virtual reality
- atrial fibrillation
- upper limb
- randomized controlled trial
- working memory
- clinical trial
- end stage renal disease
- newly diagnosed
- chronic kidney disease
- physical activity
- double blind
- single molecule
- peritoneal dialysis
- patient reported outcomes
- patient reported
- phase ii