Login / Signup

GSK3β-Mediated Expression of CUG-Translated WT1 Is Critical for Tumor Progression.

Hisae YoshitomiKun Y LeeKe YaoSeung Ho ShinTianshun ZhangQiushi WangSouren PaulEunmiri RohJoohyun RyuHanyong ChenFaisal AzizAbhijit ChakrabortyAnn M BodeZigang Dong
Published in: Cancer research (2020)
The Wilms' tumor 1 (WT1) gene is well known as a chameleon gene. It plays a role as a tumor suppressor in Wilms' tumor but also acts as an oncogene in other cancers. Previously, our group reported that a canonical AUG starting site for the WT1 protein (augWT1) acts as a tumor suppressor, whereas a CUG starting site for the WT1 protein (cugWT1) functions as an oncogene. In this study, we report an oncogenic role of cugWT1 in the AOM/DSS-induced colon cancer mouse model and in a urethane-induced lung cancer model in mice lacking cugWT1. Development of chemically-induced tumors was significantly depressed in cugWT1-deficient mice. Moreover, glycogen synthase kinase 3β promoted phosphorylation of cugWT1 at S64, resulting in ubiquitination and degradation of the cugWT1 associated with the F-box-/- WD repeat-containing protein 8. Overall, our findings suggest that inhibition of cugWT1 expression provides a potential candidate target for therapy. SIGNIFICANCE: These findings demonstrate that CUG-translated WT1 plays an oncogenic role in vivo, and GSK3β-mediated phosphorylation of cugWT1 induces its ubiquitination and degradation in concert with FBXW8.
Keyphrases