Login / Signup

Tracing Sweetgum Lignin's Molecular Properties through Biorefinery Processing.

Xiao JiangRobert H NarronQiang HanSunkyu ParkHou-Min ChangHasan Jameel
Published in: ChemSusChem (2020)
Changes to the molecular properties of lignin over the course of biorefinery processing were investigated by using sweetgum as a feedstock. Hydrothermal pretreatment has been used because it is an economically attractive, green process. Three representative biorefinery lignin preparations were obtained, with about 70 % yield based on raw lignin. The three fractions included soluble lignin adsorbed on resin (XADL), solvent-extracted lignin (HTCELp), and an additional ball-milled residual lignin (HTRELp). By comparing the raw and biorefinery lignin preparations, it can be concluded that lignin undergoes both degradation and condensation throughout the various stages of the hydrothermal-based biorefinery process. The two fractions made soluble by biorefinery processing, XADL and HTCELp, were found to be low-molecular-weight degradation products enriched with free phenolic hydroxyl groups. In addition, about 15 % of noncondensed phenolic units were involved in condensation reactions. Quantitative NMR spectroscopy analysis revealed that at least about 28 % of β-O-4' substructures were cleaved. Hibbert's ketones were identified in XADL and HTRELp, which provided evidence of lignin undergoing acidolysis. The contents of β-5' and β-β' did not change significantly upon biorefinery processing. Finally, episyringaresinol was detected in XADL and HTCELp. It is hoped that these findings will help to further demonstrate the specific effects of biorefinery processing on lignin in hardwood and facilitate its utilization to improve biorefinery economics.
Keyphrases
  • ionic liquid
  • risk assessment
  • high resolution
  • single cell
  • mass spectrometry
  • cross sectional
  • anaerobic digestion
  • sewage sludge