Molecular Recognition and In Vivo Detection of Temozolomide and 5-Aminoimidazole-4-carboxamide for Glioblastoma Using Near-Infrared Fluorescent Carbon Nanotube Sensors.
Manki SonPunit MehraFreddy T NguyenXiaojia JinVolodymyr B KomanXun GongMichael A LeeNaveed A BakhMichael S StranoPublished in: ACS nano (2022)
There is a pressing need for sensors and assays to monitor chemotherapeutic activity within the human body in real time to optimize drug dosimetry parameters such as timing, quantity, and frequency in an effort to maximize efficacy while minimizing deleterious cytotoxicity. Herein, we develop near-infrared fluorescent nanosensors based on single walled carbon nanotubes for the chemotherapeutic Temozolomide (TMZ) and its metabolite 5-aminoimidazole-4-carboxamide using Corona Phase Molecular Recognition as a synthetic molecular recognition technique. The resulting nanoparticle sensors are able to monitor drug activity in real-time even under in vivo conditions. Sensors can be engineered to be biocompatible by encapsulation in poly(ethylene glycol) diacrylate hydrogels. Selective detection of TMZ was demonstrated using U-87 MG human glioblastoma cells and SKH-1E mice with detection limits below 30 μM. As sensor implants, we show that such systems can provide spatiotemporal therapeutic information in vivo , as a valuable tool for pharmacokinetic evaluation. Sensor implants are also evaluated using intact porcine brain tissue implanted 2.1 cm below the cranium and monitored using a recently developed Wavelength-Induced Frequency Filtering technique. Additionally, we show that by taking the measurement of spatial and temporal analyte concentrations within each hydrogel implant, the direction of therapeutic flux can be resolved. In all, these types of sensors enable the real time detection of chemotherapeutic concentration, flux, directional transport, and metabolic activity, providing crucial information regarding therapeutic effectiveness.
Keyphrases
- induced apoptosis
- endoplasmic reticulum stress
- oxidative stress
- label free
- low cost
- loop mediated isothermal amplification
- endothelial cells
- real time pcr
- carbon nanotubes
- drug delivery
- systematic review
- randomized controlled trial
- quantum dots
- diabetic rats
- walled carbon nanotubes
- emergency department
- soft tissue
- type diabetes
- adipose tissue
- multiple sclerosis
- metabolic syndrome
- cell death
- blood brain barrier
- health information
- ionic liquid
- hyaluronic acid
- drug induced
- newly diagnosed
- high fat diet induced
- sensitive detection