Cutting-edge Approach of Carbon Nanostructures: Targeted Drug Delivery to Central Nervous System.
Venishaa SMridul GuleriaPrashant KumarMithun BhowmickPratibha BhowmickSumel AshiqueIqbal HusainRadheshyam PalPublished in: Central nervous system agents in medicinal chemistry (2024)
Drug delivery through the blood-brain barrier (BBB) is one of the key challenges in the modern era of medicine due to the highly semipermeable characteristics of BBB that restrict the entry of various drugs into the central nervous system (CNS) for the management of brain disorders. Drugs can be easily incorporated into carbon nanocarriers that can cross the bloodbrain barrier. Numerous nanocarriers have been developed, including polymeric nanoparticles, carbon nanoparticles, lipid-based nanoparticles, etc. Among these, carbon nanostructures could be superior due to their easier BBB penetration and strong biocompatibility. Several CDs (Carbon dots) and CD-ligand conjugates have explored effectively penetrating the BBB, which enables significant progress in using CD-based drug delivery systems (DDS) to manage CNS diseases. Despite the drug delivery applications, they might also be used as a central nervous system (CNS) drug; few of the carbon nanostructures show profound neurodegenerative activity. Further, their impact on neuronal growth and anti- amyloid action is quite interesting. The present study covers diverse carbon nanostructures for brain-targeted drug delivery, exploring a variety of CNS activities. Moreover, it emphasizes recent patents on carbon nanostructures for CNS disorders.