Anatase Incorporation to Bioactive Scaffolds Based on Salmon Gelatin and Its Effects on Muscle Cell Growth.
Cristian A AcevedoYusser OlguínNicole OrellanaElizabeth SánchezMarzena PepczynskaJavier EnrionePublished in: Polymers (2020)
The development of new polymer scaffolds is essential for tissue engineering and for culturing cells. The use of non-mammalian bioactive components to formulate these materials is an emerging field. In our previous work, a scaffold based on salmon gelatin was developed and tested in animal models to regenerate tissues effectively and safely. Here, the incorporation of anatase nanoparticles into this scaffold was formulated, studying the new composite structure by scanning electron microscopy, differential scanning calorimetry and dynamic mechanical analysis. The incorporation of anatase nanoparticles modified the scaffold microstructure by increasing the pore size from 208 to 239 µm and significantly changing the pore shape. The glass transition temperature changed from 46.9 to 55.8 °C, and an increase in the elastic modulus from 79.5 to 537.8 kPa was observed. The biocompatibility of the scaffolds was tested using C2C12 myoblasts, modulating their attachment and growth. The anatase nanoparticles modified the stiffness of the material, making it possible to increase the growth of myoblasts cultured onto scaffolds, which envisions their use in muscle tissue engineering.