Login / Signup

Biodegradation of Aflatoxin B1 in Maize Grains and Suppression of Its Biosynthesis-Related Genes Using Endophytic Trichoderma harzianum AYM3.

Adel K MadboulyYounes M RashadMohammed I M IbrahimNahla T Elazab
Published in: Journal of fungi (Basel, Switzerland) (2023)
Aflatoxin B1 is one of the most deleterious types of mycotoxins. The application of an endophytic fungus for biodegradation or biosuppression of AFB1 production by Aspergillus flavus was investigated. About 10 endophytic fungal species, isolated from healthy maize plants, were screened for their in vitro AFs-degrading activity using coumarin medium. The highest degradation potential was recorded for Trichoderma sp. (76.8%). This endophyte was identified using the rDNA-ITS sequence as Trichoderma harzianum AYM3 and assigned an accession no. of ON203053. It caused a 65% inhibition in the growth of A. flavus AYM2 in vitro. HPLC analysis revealed that T. harzianum AYM3 had a biodegradation potential against AFB1. Co-culturing of T. harazianum AYM3 and A. flavus AYM2 on maize grains led to a significant suppression (67%) in AFB1 production. GC-MS analysis identified two AFB1-suppressing compounds, acetic acid and n-propyl acetate. Investigating effect on the transcriptional expression of five AFB1 biosynthesis-related genes in A. flavus AYM2 revealed the downregulating effects of T. harzianum AYM3 metabolites on expression of aflP and aflS genes. Using HepaRG cell line, the cytotoxicity assay indicated that T. harazianum AYM3 metabolites were safe. Based on these results, it can be concluded that T. harzianum AYM3 may be used to suppress AFB1 production in maize grains.
Keyphrases
  • poor prognosis
  • cell wall
  • gene expression
  • signaling pathway
  • single cell
  • oxidative stress
  • risk assessment
  • mass spectrometry
  • dna methylation
  • simultaneous determination
  • atomic force microscopy