Effects of fluctuating thermal regimes on cold survival and life history traits of the spotted wing Drosophila (Drosophila suzukii).
Thomas EnriquezDavid RuelMaryvonne CharrierHervé ColinetPublished in: Insect science (2018)
Drosophila suzukii is an invasive pest causing severe damages to a large panel of cultivated crops. To facilitate its biocontrol with strategies such as sterile or incompatible insect techniques, D. suzukii must be mass-produced and then stored and transported under low temperature. Prolonged cold exposure induces chill injuries that can be mitigated if the cold period is interrupted with short warming intervals, referred to as fluctuating thermal regimes (FTR). In this study, we tested how to optimally use FTR to extend the shelf life of D. suzukii under cold storage. Several FTR parameters were assessed: temperature (15, 20, 25 °C), duration (0.5, 1, 2, 3 h), and frequency (every 12, 24, 36, 48 h) of warming intervals, in two wild-type lines and in two developmental stages (pupae and adults). Generally, FTR improved cold storage tolerance with respect to constant low temperatures (CLT). Cold mortality was lower when recovery temperature was 20 °C or higher, when duration was 2 h per day or longer, and when warming interruptions occurred frequently (every 12 or 24 h). Applying an optimized FTR protocol to adults greatly reduced cold mortality over long-term storage (up to 130 d). Consequences of FTR on fitness-related traits were also investigated. For adults, poststorage survival was unaffected by FTR, as was the case for female fecundity and male mating capacity. On the other hand, when cold storage occurred at pupal stage, poststorage survival and male mating capacity were altered under CLT, but not under FTR. After storage of pupae, female fecundity was lower under FTR compared to CLT, suggesting an energy trade-off between repair of chill damages and egg production. This study provides detailed information on the application and optimization of an FTR-based protocol for cold storage of D. suzukii that could be useful for the biocontrol of this pest.