Login / Signup

Arched footprints preserve the motions of fossil hominin feet.

Kevin G HatalaStephen M GatesyPeter L Falkingham
Published in: Nature ecology & evolution (2023)
The longitudinal arch of the human foot is viewed as a pivotal adaptation for bipedal walking and running. Fossil footprints from Laetoli, Tanzania, and Ileret, Kenya, are believed to provide direct evidence of longitudinally arched feet in hominins from the Pliocene and Pleistocene, respectively. We studied the dynamics of track formation using biplanar X-ray, three-dimensional animation and discrete element particle simulation. Here, we demonstrate that longitudinally arched footprints are false indicators of foot anatomy; instead they are generated through a specific pattern of foot kinematics that is characteristic of human walking. Analyses of fossil hominin tracks from Laetoli show only partial evidence of this walking style, with a similar heel strike but a different pattern of propulsion. The earliest known evidence for fully modern human-like bipedal kinematics comes from the early Pleistocene Ileret tracks, which were presumably made by members of the genus Homo. This result signals important differences in the foot kinematics recorded at Laetoli and Ileret and underscores an emerging picture of locomotor diversity within the hominin clade.
Keyphrases
  • endothelial cells
  • induced pluripotent stem cells
  • pluripotent stem cells
  • spinal cord injury
  • magnetic resonance imaging
  • high resolution