Exosomal let-7e, miR-21-5p, miR-145, miR-146a and miR-155 in Predicting Antidepressants Response in Patients with Major Depressive Disorder.
Yi-Yung HungChen-Kai ChouYi-Chien YangHung-Chun FuEl-Wui LohHong-Yo KangPublished in: Biomedicines (2021)
The intracellular microRNAs that negatively regulate Toll-like receptor 4 signaling pathways in peripheral blood mononuclear cells are associated with major depressive disorder (MDD). However, that the distribution of these microRNAs in exosomes could be a biomarker of central nervous system diseases is just beginning to be explored. In the present study, we isolated serum exosomes from patients with MDD and healthy controls to explore the levels of exosomal microRNAs, including let-7e, miR-21-5p, miR-223, miR-145, miR-146a, and miR-155. We also investigated the changes of these exosomal microRNAs after antidepressant treatment and their association with clinical changes in scores on the Hamilton Depression Rating Scale. An ANCOVA adjusted by age, sex, BMI, and smoking showed higher expression levels of miR-146a (p = 0.006) in patients with MDD compared to controls. Patients who achieved remission showed significantly lower let-7e, miR-21-5p, miR-145, miR-146a, and miR-155 levels before treatment and increased levels after antidepressant treatment compared with the non-remission group. Through receiver operating characteristic (ROC) analysis, let-7e, miR-145, and miR-146a showed acceptable discrimination between the remission and non-remission groups, whereas miR-21-5p and miR-155 showed poor discrimination. These findings demonstrate that exosomal microRNAs may play essential roles in predicting antidepressants response.
Keyphrases
- major depressive disorder
- cell proliferation
- long non coding rna
- long noncoding rna
- bipolar disorder
- toll like receptor
- poor prognosis
- mesenchymal stem cells
- stem cells
- inflammatory response
- oxidative stress
- depressive symptoms
- physical activity
- mass spectrometry
- high resolution
- bone marrow
- disease activity
- reactive oxygen species
- cerebrospinal fluid