Improving the Antioxidant and Anti-Inflammatory Activity of Fermented Milks with Exopolysaccharides-Producing Lactiplantibacillus plantarum Strains.
Roberta PreteFrancesca Dell'OrcoGiusi SabatiniFederica MontaganoNatalia BattistaAldo CorsettiPublished in: Foods (Basel, Switzerland) (2024)
Exopolysaccharides (EPSs) producing lactic acid bacteria have been claimed to confer various health benefits to the host, including the ability to face oxidative and inflammatory-related stress. This study investigated the ability of food-borne Lactiplantibacillus ( Lpb. ) plantarum to improve the antioxidant activity of fermented milks by producing EPSs. Two Lpb. plantarum strains, selected as lower and higher EPSs producers, have been applied in lab-scale fermented milk production, in combination with conventional starters. Antioxidant activity was investigated in vitro using DPPH (1,1-diphenyl-2-picrylhydrazyl), ABTS (2,2-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid), and FRAP (ferric reducing antioxidant power) assays while the ability to modulate reactive oxygen species (ROS) level was evaluated in an intestinal healthy model, subjected to both oxidative and inflammatory stress. Furthermore, to verify whether digestion affects functionality, fermented milks were evaluated before and after in vitro-simulated INFOGEST digestion. The results showed an improved antioxidant activity of fermented milk enriched with Lpb. plantarum LT100, the highest EPSs producer. Furthermore, the data showed a different ROS modulation with a protective anti-inflammatory effect of samples enriched with Lpb. plantarum strains. Our data suggest the use of selected EPS-producing strains of Lpb. plantarum as a natural strategy to enrich the functionality of fermented milks in terms of ROS modulation and inflammatory-related stress.