Login / Signup

Application of Skimmed-Milk Flocculation Method for Wastewater Surveillance of COVID-19 in Kathmandu, Nepal.

Sarmila TandukarOcean ThakaliAnanda TiwariRakshya BaralBikash MallaEiji HaramotoJivan ShakyaReshma TuladharDev Raj JoshiBhawana SharmaBhushan Raj ShresthaSamendra P Sherchan
Published in: Pathogens (Basel, Switzerland) (2024)
Wastewater surveillance (WS) has been used globally as a complementary tool to monitor the spread of coronavirus disease 2019 (COVID-19) throughout the pandemic. However, a concern about the appropriateness of WS in low- and middle-income countries (LMICs) exists due to low sewer coverage and expensive viral concentration methods. In this study, influent wastewater samples (n = 63) collected from two wastewater treatment plants (WWTPs) of the Kathmandu Valley between March 2021 and February 2022 were concentrated using the economical skimmed-milk flocculation method (SMFM). The presence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was tested by qPCR using assays that target the nucleocapsid (N) and envelope (E) genes. Overall, 84% (53/63) of the total samples were positive for SARS-CoV-2 according to at least one of the tested assays, with concentrations ranging from 3.5 to 8.3 log 10 gene copies/L, indicating the effectiveness of the SMFM. No correlation was observed between the total number of COVID-19 cases and SARS-CoV-2 RNA concentrations in wastewater collected from the two WWTPs ( p > 0.05). This finding cautions the prediction of future COVID-19 waves and the estimation of the number of COVID-19 cases based on wastewater concentration in settings with low sewer coverage by WWTPs. Future studies on WS in LMICs are recommended to be conducted by downscaling to sewer drainage, targeting a limited number of houses. Overall, this study supports the notion that SMFM can be an excellent economical virus-concentrating method for WS of COVID-19 in LMICs.
Keyphrases