Login / Signup

Development of an exon skipping therapy for X-linked Alport syndrome with truncating variants in COL4A5.

Tomohiko YamamuraTomoko HorinouchiTomomi AdachiMaki TerakawaYutaka TakaokaKohei OmachiMinoru TakasakoKiyosumi TakaishiTakao ShojiYoshiyuki OnishiYoshito KanazawaMakoto KoizumiYasuko TomonoAki SuganoAkemi ShonoShogo MinamikawaChina NaganoNana SakakibaraShinya IshikoYuya AotoMisato KamuraYutaka HaritaKenichiro MiuraShoichiro KandaNaoya MorisadaRini RossantiMing Juan YeYoshimi NozuMasafumi MatsuoHirofumi KaiKazumoto IijimaKandai Nozu
Published in: Nature communications (2020)
Currently, there are no treatments for Alport syndrome, which is the second most commonly inherited kidney disease. Here we report the development of an exon-skipping therapy using an antisense-oligonucleotide (ASO) for severe male X-linked Alport syndrome (XLAS). We targeted truncating variants in exon 21 of the COL4A5 gene and conducted a type IV collagen α3/α4/α5 chain triple helix formation assay, and in vitro and in vivo treatment efficacy evaluation. We show that exon skipping enabled trimer formation, leading to remarkable clinical and pathological improvements including expression of the α5 chain on glomerular and the tubular basement membrane. In addition, the survival period was clearly prolonged in the ASO treated mice group. This data suggests that exon skipping may represent a promising therapeutic approach for treating severe male XLAS cases.
Keyphrases