Login / Signup

An Optimized Isotopic Photocleavable Tagging Strategy for Site-Specific and Quantitative Profiling of Protein O-GlcNAcylation in Colorectal Cancer Metastasis.

Jialin LiuYi HaoChunting WangYangya'nan JinYong YangJin GuXing Chen
Published in: ACS chemical biology (2022)
O-linked-β- N -acetylglucosamine (O-GlcNAc) glycosylation is a ubiquitous protein post-translational modification of the emerging importance in metazoans. Of the thousands of O-GlcNAcylated proteins identified, many carry multiple modification sites with varied stoichiometry. To better match the scale of O-GlcNAc sites and their dynamic nature, we herein report an optimized strategy, termed isotopic photocleavable tagging for O-GlcNAc profiling (isoPTOP), which enables quantitative and site-specific profiling of O-GlcNAcylation with excellent specificity and sensitivity. In HeLa cells, ∼1500 O-GlcNAcylation sites were identified with the optimized procedures, which led to quantification of ∼1000 O-GlcNAcylation sites with isoPTOP. Furthermore, we apply isoPTOP to probe the O-GlcNAcylation dynamics in a pair of colorectal cancer (CRC) cell lines, SW480 and SW620 cells, which represent primary carcinoma and metastatic cells, representatively. The stoichiometric differences of 625 O-GlcNAcylation sites are quantified. Of these quantified sites, many occur on important regulators involved in tumor progression and metastasis. Our results provide a valuable database for understanding the functional role of O-GlcNAc in CRC. IsoPTOP should be applicable for investigating O-GlcNAcylation dynamics in various pathophysiological processes.
Keyphrases
  • induced apoptosis
  • cell cycle arrest
  • squamous cell carcinoma
  • small cell lung cancer
  • single cell
  • emergency department
  • high resolution
  • poor prognosis
  • oxidative stress
  • mass spectrometry
  • drug induced