Molecular Assembly of Surfactant Mixtures in Oil-Swollen Micelles: Implications for High Salinity Colloidal Stability.
Hsieh ChenAyrat GizzatovAmr I Abdel-FattahPublished in: The journal of physical chemistry. B (2020)
Alkylbenzene sulfonates are one of the most important synthetic surfactant families, considering their wide applicability, cost-effectiveness, and overall consumption levels. Nevertheless, their low salt tolerance (especially divalent ion contents) prevented their wider applications such as enhanced oil recovery in high salinity reservoirs. Here, using experiments and atomistic molecular dynamics simulations, we demonstrated that the high salinity colloidal stability of alkylbenzene sulfonates can be dramatically increased by mixing with zwitterionic cosurfactants in oil-swollen micelles. By mixing with cosurfactants we had two important observations. (1) The polydispersity of surfactant mixture oil-swollen micelles were largely decreased due to the less rigid oil/water interfaces with mixed surfactants, which formed fewer but larger uniform micelles. (2) Strong dehydration of sulfonates due to the shielding from protruding more extended zwitterionic cosurfactants at the oil/water interfaces. Both observed molecular assembly characteristics triggered by the cosurfactants effectively reduced the total exposures of sulfonates to water phase that may form divalent ion bridging and large aggregates, and thus increased their high salinity colloidal stability. Lastly, it was observed that the dehydration of sulfonates was the highest at flat oil/water interfaces (very large oil-swollen micelles), which justified that adding trace amount of mineral oils may boost the high salinity colloidal stability even further.