Anammox granular sludge (AnGS) preservation is indispensable for the application of anammox technology. Oxygen is a common and crucial factor for anammox, yet its long-term effects on AnGS during preservation remain incomplete clarification. This study investigated the effect of oxygen on AnGS in two simulated preservation systems with open and sealed conditions, and the mechanism was discussed. The results showed that the open system was in an oxidized state with an average dissolved oxygen (DO) concentration and oxidation-reduction potential (ORP) of (3.10 ± 1.36) mg·L -1 and (112.58 ± 46.78) mV, while a reduced state for the sealed system with no detected DO and a lower average ORP of (-153.96 ± 64.32) mV. Both systems showed declines in AnGS activity, while with different responses of AnGS demonstrated by the evolution in terms of granular morphology and structure, bacterial communities, bacteria survival, and bacteria antioxidation. In the open system, reactive oxygen species were generated and destroyed the unsaturated fatty acids in the cell membrane, further leading to the destructed cell structure and declined activity. However, in the sealed system, AnAOB tended to enter a dormant state after long-term preservation, contributing to better conditions in granular morphology and structure, higher AnAOB abundance, and higher live cell ratio. The findings of this study are expected to offer vital information and guidelines for the preservation technologies of AnGS.