Login / Signup

Unveiling the Roles of Alloyed Boron in Hexavalent Chromium Removal Using Borohydride-Synthesized Nanoscale Zerovalent Iron: Electron Donor and Antipassivator.

Lihang MaYi-Bo HuShuhan LiTing DuXinran XiongYuanhuan WuXiao-Yan LiMing-Lai FuBaoling Yuan
Published in: Environmental science & technology (2024)
Nanoscale zerovalent iron synthesized using borohydride (B-NZVI) has been widely applied in environmental remediation in recent decades. However, the contribution of boron in enhancing the inherent reactivity of B-NZVI and its effectiveness in removing hexavalent chromium [Cr(VI)] have not been well recognized and quantified. To the best of our knowledge, herein, a core-shell structure of B-NZVI featuring an Fe-B alloy shell beneath the iron oxide shell is demonstrated for the first time. Alloyed boron can reduce H + , contributing to more than 35.6% of H 2 generation during acid digestion of B-NZVIs. In addition, alloyed B provides electrons for Fe 3+ reduction during Cr(VI) removal, preventing in situ passivation of the reactive particle surface. Meanwhile, the amorphous oxide shell of B-NZVI exhibits an increased defect density, promoting the release of Fe 2+ outside the shell to reduce Cr(VI), forming layer-structured precipitates and intense Fe-O bonds. Consequently, the surface-area-normalized capacity and surface reaction rate of B-NZVI are 6.5 and 6.9 times higher than those of crystalline NZVI, respectively. This study reveals the importance of alloyed B in Cr(VI) removal using B-NZVI and presents a comprehensive approach for investigating electron pathways and mechanisms involved in B-NZVIs for contaminant removal.
Keyphrases
  • healthcare
  • randomized controlled trial
  • metal organic framework
  • solar cells
  • oxide nanoparticles
  • anaerobic digestion