Enantiocomplementary Epoxidation Reactions Catalyzed by an Engineered Cofactor-Independent Non-natural Peroxygenase.
Guangcai XuMichele CrottiThangavelu SaravananKim M KatajaGerrit J PoelarendsPublished in: Angewandte Chemie (International ed. in English) (2020)
Peroxygenases are heme-dependent enzymes that use peroxide-borne oxygen to catalyze a wide range of oxyfunctionalization reactions. Herein, we report the engineering of an unusual cofactor-independent peroxygenase based on a promiscuous tautomerase that accepts different hydroperoxides (t-BuOOH and H2 O2 ) to accomplish enantiocomplementary epoxidations of various α,β-unsaturated aldehydes (citral and substituted cinnamaldehydes), providing access to both enantiomers of the corresponding α,β-epoxy-aldehydes. High conversions (up to 98 %), high enantioselectivity (up to 98 % ee), and good product yields (50-80 %) were achieved. The reactions likely proceed via a reactive enzyme-bound iminium ion intermediate, allowing tweaking of the enzyme's activity and selectivity by protein engineering. Our results underscore the potential of catalytic promiscuity for the engineering of new cofactor-independent oxidative enzymes.