Login / Signup

The brain neuropeptides and STAT3 mediate the inhibitory effect of 17-β Estradiol on central leptin resistance in young but not aged female high-fat diet mice.

Zeinab FarhadiMohammad KhaksariHossein AzizianShahriar Dabiri
Published in: Metabolic brain disease (2022)
Aging and menopause effect on body composition and energy balance. Estrogen (E2) plays an important role in body's metabolism. The aim of the present study was to determine changes in leptin function in young intact and ovariectomized (OVX) animals in comparison to the aged animals treated with E2. Young (Intact and OVX 4 months) and aged (19-21 months) female mice were fed High-fat diet (HFD) for 12 weeks and, then they were divided into eight groups including: Intact + OIL, Intact + E2, Intact + Pair body weight (PBW), OVX + OIL, OVX + E2, OVX + PBW, Aged + OIL, and Aged + E2. E2 was administered subcutaneously every four days for four weeks. Responsiveness to leptin was assessed by measuring energy balance components. Results showed that eating HFD increased weight and calorie consumption in young mice, and chronic treatment with E2 decreased both these variables in young animals. E2 only improved the sensitivity to leptin in young animals. Treatment with E2 resulted in increased α-MSH neuropeptide, reduced NPY and AgRP neuropeptides in the brain, and decreased serum leptin in the young animals. Also, treatment with E2 increased the expression of p-STAT3 molecular level in the hypothalamic arcuate nucleus (ARC) in the young animals. Our results indicated that response to E2 depended on age and E2 protects young HFD fed mice from obesity and improves leptin sensitivity.
Keyphrases