Peg-Grafted Liposomes for L-Asparaginase Encapsulation.
Marina de Souza GuimarãesJorge Javier Muso CachumbaCecilia Zorzi BuenoKarin Mariana Torres-ObrequeGrace Verónica Ruiz LaraGisele MonteiroLeandro Ramos Souza BarbosaAdalberto PessoaCarlota de Oliveira Rangel-YaguiPublished in: Pharmaceutics (2022)
L-asparaginase (ASNase) is an important biological drug used to treat Acute Lymphoblastic Leukemia (ALL). It catalyzes the hydrolysis of L-asparagine (Asn) in the bloodstream and, since ALL cells cannot synthesize Asn, protein synthesis is impaired leading to apoptosis. Despite its therapeutic importance, ASNase treatment is associated to side effects, mainly hypersensitivity and immunogenicity. Furthermore, degradation by plasma proteases and immunogenicity shortens the enzyme half-life. Encapsulation of ASNase in liposomes, nanostructures formed by the self-aggregation of phospholipids, is an attractive alternative to protect the enzyme from plasma proteases and enhance pharmacokinetics profile. In addition, PEGylation might prolong the in vivo circulation of liposomes owing to the spherical shielding conferred by the polyethylene (PEG) corona around the nanostructures. In this paper, ASNase was encapsulated in liposomal formulations composed by 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) or 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) containing or not different concentrations of 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N [methoxy (polyethylene glycol)-2000] (DSPE-PEG). Nanostructures of approximately 142-202 nm of diameter and polydispersity index (PDI) of 0.069 to 0.190 were obtained and the vesicular shape confirmed by Transmission Electron Microscopy (TEM and cryo-TEM). The encapsulation efficiency (%EE) varied from 10% to 16%. All formulations presented activity in contact with ASNase substrate, indicating the liposomes permeability to Asn and/or enzyme adsorption at the nanostructures' surface; the highest activity was observed for DMPC/DSPE-PEG 10%. Finally, we investigated the activity against the Molt 4 leukemic cell line and found a lower IC 50 for the DMPC/DSPE-PEG 10% formulation in comparison to the free enzyme, indicating our system could provide in vivo activity while protecting the enzyme from immune system recognition and proteases degradation.
Keyphrases
- drug delivery
- acute lymphoblastic leukemia
- drug release
- electron microscopy
- cell cycle arrest
- cell death
- acute myeloid leukemia
- drug induced
- allogeneic hematopoietic stem cell transplantation
- high resolution
- endothelial cells
- fatty acid
- photodynamic therapy
- signaling pathway
- smoking cessation
- gram negative
- combination therapy
- atomic force microscopy