Transcription factor CmHSFA4-CmMYBS3 complex enhances salt tolerance in chrysanthemum by repressing CmMYB121 expression.
Xinhui WangYue WangYuhan JiangHan WangLi-Jie ZhouFei LiLikai WangJiafu JiangFadi ChenSumei ChenPublished in: Plant physiology (2024)
Excessive soil salinity not only hampers plant growth and development but can also lead to plant death. Previously, we found that heat shock factor A4 (CmHSFA4) enhances the tolerance of chrysanthemum (Chrysanthemum morifolium) to salt. However, the underlying molecular mechanism remains unclear. In this study, we identified a candidate MYB transcription factor, CmMYB121, which responded to salt stress. We observed that the CmMYB121 transcription is suppressed by CmHSFA4. Moreover, overexpression of CmMYB121 exacerbated chrysanthemum sensitivity to salt stress. CmHSFA4 directly bound to the promoter of CmMYB121 at the heat shock element (HSE). Protein-protein interaction assays identified an interaction between CmHSFA4 and CmMYBS3, a transcriptional repressor, and recruited the corepressor TOPLESS (CmTPL) to inhibit CmMYB121 transcription by impairing the H3 and H4 histone acetylation levels of CmMYB121. Our study demonstrated that a CmHSFA4-CmMYBS3-CmTPL complex modulates CmMYB121 expression, consequently regulating the tolerance of chrysanthemum to salt. The findings shed light on the responses of plants to salt stress.