Canonical and Interior Circular RNAs Function as Competing Endogenous RNAs in Psoriatic Skin.
Xiaoxin LiuJacqueline FrostAnne BowcockWeixiong ZhangPublished in: International journal of molecular sciences (2021)
(1) Background: Understanding the function of circular RNAs (circRNAs), a class of noncoding RNA, in psoriatic skin can provide important insights into the complex regulation of genes contributing to the pathogenesis of psoriasis. (2) Methods: A novel method was applied to RNA-seq datasets from 93 skin biopsy samples to comprehensively identify circRNAs of all types, i.e., canonical circRNAs from the intron-exon junctions of mRNAs and interior circRNAs (i-circRNAs) from the interior regions of exons, introns, and intergenic regions. Selected circRNAs were experimentally validated by qRT-PCR and Sanger sequencing. CircRNAs with abundant and differential expression were identified and their putative function as competing endogenous RNAs (ceRNAs) was analyzed by an integrated analysis of circRNAs, microRNAs, and mRNAs. (3) Results: With a comprehensive search using no information of splicing signals, we systematically identified 179 highly abundant circRNAs in psoriatic skin. Many of these were reported for the first time and many were differentially expressed in involved versus normal or uninvolved skin. Validation based on three additional RNA-seq datasets confirmed most of the identified circRNAs in psoriatic skin. Experimental analyses confirmed the expression of the well-known circRNA CDR1as, a canonical circRNA, and a novel i-circRNA in psoriasis. We also identified many circRNAs that may act as ceRNAs to regulate the expression of mRNA genes in psoriasis-related signaling pathways in psoriasis. (4) Conclusions: The result of the study suggested that circRNAs are abundant in psoriatic skin, have distinct characteristics, and contribute to psoriatic pathogenesis.
Keyphrases
- rna seq
- single cell
- rheumatoid arthritis
- soft tissue
- ankylosing spondylitis
- disease activity
- wound healing
- poor prognosis
- healthcare
- systemic lupus erythematosus
- signaling pathway
- gene expression
- ultrasound guided
- epithelial mesenchymal transition
- atopic dermatitis
- cell proliferation
- drug induced
- fine needle aspiration