Hybrids of Polymeric Capsules, Lipids, and Nanoparticles: Thermodynamics and Temperature Rise at the Nanoscale and Emerging Applications.
Bogdan V ParakhonskiyWolfgang J ParakDmitry V VolodkinAndré G SkirtachPublished in: Langmuir : the ACS journal of surfaces and colloids (2019)
The importance of thermodynamics does not need to be emphasized. Indeed, elevated temperature processes govern not only industrial scale production but also self-assembly, chemical reaction, interaction between molecules, etc. Not surprisingly, biological processes typically take place at a specific temperature. Here, we look at possibilities to raise the localized temperature by a laser around noble-metal nanoparticles incorporated into shells of layer-by-layer polyelectrolyte microcapsules-freely suspended delivery vehicles in an aqueous solution, developed in the Department of Interfaces, Max Planck Institute of Colloids and Interfaces, headed by Helmuth Möhwald. Understanding the mechanisms of localized temperature rise is essential, that is why we analyze the influence of incident intensity, nanoparticle size, their distribution and aggregation state, as well as thermodynamics at the nanoscale. This leads us to scrutinize "global" (used for thermal encapsulation) versus "local" (used for release of encapsulated materials) temperature rise. Similar analysis is extended to planar polymeric coatings, the lipid membrane system of vesicles and cells, on which nanoparticles are adsorbed. Insights are provided into the mechanisms of physicochemical and biological effects, the nature of which has always been profoundly, interactively, and engagingly discussed in the Department of Interfaces. This analysis is combined with recent developments providing outlook and highlighting a broad range of emerging applications.