Differential effects of the temporal and spatial distribution of audiovisual stimuli on cross-modal spatial recalibration.
Patrick BrunsHubert R DinseBrigitte RöderPublished in: The European journal of neuroscience (2020)
Visual input constantly recalibrates auditory spatial representations. Exposure to isochronous audiovisual stimuli with a fixed spatial disparity typically results in a subsequent auditory localization bias (ventriloquism aftereffect, VAE), whereas exposure to spatially congruent audiovisual stimuli improves subsequent auditory localization (multisensory enhancement, ME). Here, we tested whether cross-modal recalibration is affected by the stimulation rate and/or the distribution of audiovisual spatial disparities during training. Auditory localization was tested before and after participants were exposed either to audiovisual stimuli with a constant spatial disparity of 13.5° (VAE) or to spatially congruent audiovisual stimulation (ME). In a between-subjects design, audiovisual stimuli were presented either at a low frequency of 2 Hz, as used in previous studies of VAE and ME, or intermittently at a high frequency of 10 Hz, which mimics long-term potentiation (LTP) protocols and which was found superior in eliciting unisensory perceptual learning. Compared to low-frequency stimulation, VAE was reduced after high-frequency stimulation, whereas ME occurred regardless of the stimulation protocol. In two additional groups, we manipulated the spatial distribution of audiovisual stimuli in the low-frequency condition. Stimuli were presented with varying audiovisual disparities centered around 13.5° (VAE) or 0° (ME). Both VAE and ME were equally strong compared to a fixed spatial relationship of 13.5° or 0°, respectively. Taken together, our results suggest (a) that VAE and ME represent partly dissociable forms of learning and (b) that auditory representations adjust to the overall stimulus statistics rather than to a specific audiovisual spatial relationship.