Vascular smooth muscle cells (VSMCs), the main cells constructing blood vessels, are important in the regulation of the pathophysiology of vascular systems; however, relatively few studies have investigated the influence of nanomaterials (NMs) on VSMCs. In this study, we found that the interaction between graphene oxide and human VSMCs led to the cytotoxicity and morphological changes of cells. Because transcriptomic data suggested that graphene oxide decreased anti-viral signaling pathways via decreasing Toll-like receptor 3 (TLR3), we further verified that graphene oxide decreased interferon induced protein with tetratricopeptide repeats 1 (IFIT1) and the radical S -adenosyl methionine domain containing 2 (RSAD2), and TLR3-downstream genes involved in anti-viral responses. Due to the involvement of RSAD2 in lipid dysfunction, we also verified that graphene oxide disrupted lipid homeostasis and increased adipose triglyceride lipase (ATGL). Adding TLR3 agonist polyinosinic:polycytidylic acid (Poly IC) partially increased TLR3-downstream protein interleukin-8 (IL-8) and some lipid classes, particularly lysophosphatidylcholine (LPC) and lysophosphatidylethanolamine (LPE), in graphene oxide-exposed VSMCs. In mice receiving repeated intravenous injection of graphene oxide, significantly decreased TLR3, IFIT1 and RSAD2 but increased ATGL proteins were observed in aortas. We conclude that graphene oxide altered anti-viral signaling pathways and lipid metabolism via decreasing TLR3 in VSMCs.
Keyphrases
- toll like receptor
- vascular smooth muscle cells
- inflammatory response
- nuclear factor
- angiotensin ii
- immune response
- signaling pathway
- induced apoptosis
- sars cov
- fatty acid
- cell cycle arrest
- endothelial cells
- epithelial mesenchymal transition
- endoplasmic reticulum stress
- dendritic cells
- type diabetes
- oxidative stress
- high dose
- adipose tissue
- insulin resistance
- high glucose
- high resolution
- cell death
- ultrasound guided
- amino acid
- data analysis