Login / Signup

Differential responses to increasing numbers of mild traumatic brain injury in a rodent closed-head injury model.

Brooke FehilyCarole A BartlettStephen LydiardMichael ArcherHannah MilbournMaimuna MajimbiJan M HemmiSarah Alison DunlopNathanael J YatesMelinda Fitzgerald
Published in: Journal of neurochemistry (2019)
Following mild traumatic brain injury (mTBI), further mild impacts can exacerbate negative outcomes. To compare chronic damage and deficits following increasing numbers of repeated mTBIs, a closed-head weight-drop model of repeated mTBI was used to deliver 1, 2 or 3 mTBIs to adult female rats at 24 h intervals. Outcomes were assessed at 3 months following the first mTBI. No gross motor, sensory or reflex deficits were identified (p > 0.05), consistent with current literature. Cognitive function assessed using a Morris water maze revealed chronic memory deficits following 1 and 2, but not 3 mTBI compared to shams (p ≤ 0.05). Oxidative damage to DNA was assessed immunohistochemically in the dentate hilus of the hippocampus and splenium of the corpus callosum; no changes were observed. IBA1-positive microglia were increased in size in the cortex following 1 mTBI and in the corpus callosum following 2 mTBI compared to shams (p ≤ 0.05); no changes were observed in the dentate hilus. Glial fibrillary acidic protein (GFAP)-positive astrocyte immunoreactivity was assessed in all three brain regions and no chronic changes were observed. Integrity of myelin ultrastructure in the corpus callosum was assessed using transmission electron microscopy. G ratio was decreased following 2 mTBIs compared to shams (p ≤ 0.05) at post hoc level only. The changing patterns of damage and deficits following increasing numbers of mTBI may reflect dynamic responses to small numbers of mTBIs or a conditioning effect such that increasing numbers of mTBIs do not necessarily result in worsening pathology. OPEN SCIENCE BADGES: This article has received a badge for *Open Materials* because it provided all relevant information to reproduce the study in the manuscript. The complete Open Science Disclosure form for this article can be found at the end of the article. More information about the Open Practices badges can be found at https://cos.io/our-services/open-science-badges/. Cover Image for this issue: doi: 10.1111/jnc.14508.
Keyphrases