Butyrate-Induced In Vitro Colonocyte Differentiation Network Model Identifies ITGB1, SYK, CDKN2A, CHAF1A, and LRP1 as the Prognostic Markers for Colorectal Cancer Recurrence.
Nirmalya DasguptaBhupesh Kumar ThakurAbhijit ChakrabortySantasabuj DasPublished in: Nutrition and cancer (2018)
Numerous mechanisms are believed to contribute to the role of dietary fiber-derived butyrate in the protection against the development of colorectal cancers (CRCs). To identify the most crucial butyrate-regulated genes, we exploited whole genome microarray of HT-29 cells differentiated in vitro by butyrate treatment. Butyrate differentiates HT-29 cells by relaxing the perturbation, caused by mutations of Adenomatous polyposis coli (APC) and TP53 genes, the most frequent mutations observed in CRC. We constructed protein-protein interaction network (PPIN) with the differentially expressed genes after butyrate treatment and extracted the hub genes from the PPIN, which also participated in the APC-TP53 network. The idea behind this approach was that the expression of these hub genes also regulated cell differentiation, and subsequently CRC prognosis by evading the APC-TP53 mutational effect. We used mRNA expression profile of these critical hub genes from seven large CRC cohorts. Logistic Regression showed strong evidence for association of these common hubs with CRC recurrence. In this study, we exploited PPIN to reduce the dimension of microarray biologically and identified five prognostic markers for the CRC recurrence, which were validated across different datasets. Moreover, these five biomarkers we identified increase the predictive value of the TNM staging for CRC recurrence.
Keyphrases
- bioinformatics analysis
- genome wide
- genome wide identification
- induced apoptosis
- network analysis
- protein protein
- transcription factor
- free survival
- escherichia coli
- lymph node
- signaling pathway
- poor prognosis
- dna methylation
- small molecule
- wastewater treatment
- binding protein
- cell cycle arrest
- single cell
- high glucose
- cell proliferation
- young adults
- cell death
- replacement therapy
- diabetic rats