Login / Signup

Simulated shift work during pregnancy does not impair progeny metabolic outcomes in sheep.

Kathryn L GatfordDavid J KennawayHong LiuChristopher G SchultzAmy L WooldridgeTimothy R KuchelTamara J Varcoe
Published in: The Journal of physiology (2020)
Disrupted maternal circadian rhythms, such as those experienced during shift work, are associated with impaired progeny metabolism in rodents. The effects of disrupted maternal circadian rhythms on progeny metabolism have not been assessed in altricial, non-litter bearing species. We therefore assessed postnatal growth from birth to adulthood, as well as body composition, glucose tolerance, insulin secretion and insulin sensitivity, in pre-pubertal and young adult progeny of sheep exposed to control conditions (CON: 10 males, 10 females) or to a simulated shift work (SSW) protocol for the first one-third (SSW0-7: 11 males, 9 females), the first two-thirds (SSW0-14: 8 males, 11 females) or all (SSW0-21: 8 males, 13 females) of pregnancy. Progeny growth did not differ between maternal treatments. In pre-pubertal progeny (12-14 weeks of age), adiposity, glucose tolerance and insulin secretion during an i.v. glucose tolerance test and insulin sensitivity did not differ between maternal treatments. Similarly, in young adult progeny (12-14 months of age), food intake, adiposity and glucose tolerance did not differ between maternal treatments. At this age, however, insulin secretion in response to a glucose bolus was 30% lower in female progeny in the combined SSW groups compared to control females (P = 0.031), and insulin sensitivity of SSW0-21 singleton females was 236% compared to that of CON singleton female progeny (P = 0.025). At least in this model, maternal SSW does not impair progeny metabolic health, with some evidence of greater insulin action in female young adult progeny.
Keyphrases