Effect of different selenium sources and concentrations on glutathione peroxidase activity and cholesterol metabolism of beef cattle.
Janaina Silveira da SilvaAlessandra F RosaCristina T MoncauBárbara Silva-VignatoSilvana Marina P PugineMariza P de MeloJoão Marcelo D SanchezMarcus Antonio ZanettiPublished in: Journal of animal science (2021)
The objective of this study was to investigate the effects of different Se sources and concentrations on glutathione forms and cholesterol metabolism in beef cattle. Sixty-three Nellore bulls (412 ± 19 kg body weight (BW); 24 mo old) were randomly assigned to a completely randomized design in a 2 × 3 + 1 factorial arrangement (63 pens; one animal/pen) with two Se sources (sodium selenite, ING and Se-yeast, ORG), three concentrations (0.3, 0.9, and 2.7 mg supplemental Se/kg dry matter (DM)), and control treatment (without Se supplementation) fed for 90 d. Blood samples were collected on day 0, 28, 56, and 84. Muscle and liver samples were collected at harvest. Hepatic GSSG (P = 0.004), GSH/GSSG ratio (P = 0.030), and GSH-Px (P = 0.004) were affected by Se source × concentration interaction. Oxidized glutathione was higher in the ORG group vs. ING at concentration 2.7 mg supplemental Se/kg DM, but at 0.3 mg supplemental Se/kg DM the ING group was higher than ORG. The liver GSH-Px activity was higher in the ORG group vs. ING at concentration 0.9 and 2.7 mg supplemental Se/kg DM. The GSH/GSSG ratio was the highest in animals fed 0.3 mg supplemental Se/kg DM of ORG. Selenium liver concentration increased linearly with the supplemental Se concentration in the diet (y = 0.0583 + 0.4254x, R2 = 0.92, P < 0.0001), regardless of source. Total meat cholesterol was greater (P < 0.001) in CON (control) vs. SUP (supplemented, regardless source) group. The muscle GSH-Px activity was higher (P < 0.001) in SUP vs. CON and increased (P < 0.004) with increasing supplemental Se concentrations. There was an increase on very low-density lipoprotein (VLDL), glucose, and triglycerides in ORG vs. ING (P ≤ 0.035). In general, serum Se was higher (P < 0.001) in SUP vs. CON and increased with increasing supplemental Se concentration. Lastly, the 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase (HMGCR) concentration was lower (P = 0.002) in SUP (0.39 ng/mL) vs. CON (0.55 ng/mL). Selenium supplementation with different sources and concentrations has the potential to affect cholesterol metabolism by affecting GSH/GSSG ratio, GSH-Px, and the HMGCR.