Formulation of Nanovaccines toward an Extended Immunity against Nicotine.
Yun HuZongmin ZhaoMarion EhrichChenming ZhangPublished in: ACS applied materials & interfaces (2021)
Nicotine vaccines have been investigated to assist with smoking cessation. Because smoking cessation is a long process, past nicotine vaccines required multiple injections to achieve long-term efficacy. It would be of great significance if extended efficacy can be achieved with fewer injections. Here, we report the assembly of lipid-polylactic acid (PLA) and lipid-poly(lactic-co-glycolic acid) (PLGA) hybrid nanoparticle (NP) based nicotine vaccines. Mice immunized with the lipid-PLGA vaccine produced higher titers of nicotine-specific antibodies than the lipid-PLA vaccine in short-term. However, the lipid-PLA vaccine was found to induce long-lasting antibodies. Three months after the immunization, only mice that received first two injections of the lipid-PLGA vaccine and a third injection of the lipid-PLA vaccine achieved a significantly lower brain nicotine concentration of 65.13 ± 20.59 ng/mg than 115.88 ± 37.62 ng/mg from the negative controls. The results indicate that not only the stability of the vaccines but also the combination of the vaccines impacted the long-term efficacy of the immunization. Lastly, both the body weight and the histopathology study suggest that the vaccines were safe to mice. These findings suggest that long-term immunity against nicotine can be realized by a rational administration of nanovaccines of different levels of stability.